13896 measured reflections

 $R_{\rm int} = 0.105$

2918 independent reflections

1734 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(2-Pyridyl)-5-(4-pyridyl)-4-(p-tolyl)-1*H*-1,2,4-triazole

Lu-Tong Yuan,^a Hai Zhang,^b Zuo-Xiang Wang^b and Zhi-Rong Qu^b*

^aBenxi Health School of Liaoning, Liaoning 117022, People's Republic of China, and ^bOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: quzr@seu.edu.cn

Received 25 April 2009; accepted 1 May 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.071; wR factor = 0.159; data-to-parameter ratio = 13.4.

In the molecule of the title compound, $C_{19}H_{15}N_5$, the dihedral angles formed by the plane of the triazole ring with those of the 2-pyridyl, 4-pyridyl and *p*-tolyl rings are 28.12 (10), 34.62 (10) and 71.43 (9)°, respectively. The crystal structure is consolidated by $C-H\cdots\pi$ hydrogen-bonding interactions and by $\pi-\pi$ stacking interactions, with a centroid–centroid distance of 3.794 (4) Å.

Related literature

For the pharmaceutical and agricultural applications of triazoles, see: Grénman *et al.* (2003). For general background on the coordination chemistry of triazoles, see: Haasnoot (2000); Klingele & Brooker (2003); Beckmann & Brooker (2003). For the synthesis of the title compound, see: Erwin (1958).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{15}N_5 \\ M_r = 313.36 \\ \text{Monoclinic, } P2_1/c \\ a = 5.6104 \ (11) \text{ Å} \\ b = 16.312 \ (3) \text{ Å} \\ c = 16.902 \ (4) \text{ Å} \\ \beta = 105.07 \ (3)^{\circ} \end{array}$

 $V = 1493.6 (6) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 0.09 mm^{-1} T = 293 K 0.20 \times 0.20 \times 0.20 mm

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.982, T_{max} = 0.983$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.071$	217 parameters
$wR(F^2) = 0.159$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
2918 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11-H11A\cdots Cg1^{i}$	0.93	2.79	3.630 (4)	150
$C12 - H12A \cdots Cg3$	0.93	2.90	3.532 (4)	126
$C14 - H14A \cdots Cg1^{ii}$	0.93	2.76	3.628 (4)	156
$C18 - H18A \cdots Cg2^{iii}$	0.93	2.78	3.615 (4)	149
$C19-H19C\cdots Cg3^{iv}$	0.96	3.08	3.698 (4)	124

Symmetry codes: (i) x + 1, $-y - \frac{3}{2}$, $z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) x - 1, y, z; (iv) -x, -y, -z. *Cg*1, *Cg*2 and *Cg*3 are the centroids of the N1–N3/C1,C2, N4/C3–C7 and N5/C8–C12 rings, respectively.

Table 2 π - π Stacking interaction geometry

50	Stacking	interaction	geometry.	

Group 1	Group 2	α (°)	DCC (Å)	τ (°)
Cg2	$Cg2^{i}$	0.0	3.794 (3)	31.30

Symmetry code: (i) 3 - x, 1 - y, 2 - z. α is the dihedral angle between the planes, DCC is the length of the centroid-centroid vector, τ is the angle subtended by the plane normal to CC and Cg2 is the centroid of ring N5/C8–C12.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL/PC* (Sheldrick, 2008); software used to prepare material for publication: *PRPKAPPA* (Ferguson, 1999).

This work was supported by the Technical Fund Financing Projects (grant Nos. 9207042464 and 9207041482) from Southeast University to ZRQ.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2317).

References

Beckmann, U. & Brooker, S. (2003). Coord. Chem. Rev. 245, 17–29.
Erwin, K. (1958). J. Org. Chem. 23, 1086–1087.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Grénman, H., Salmi, T., Mäki-Arvela, P., Wärnå, J., Eränen, K., Tirronen, E. & Pehkonen, A. (2003). Org. Process Res. Dev. 7, 942–950.
Haasnoot, J. G. (2000). Coord. Chem. Rev. 200–202, 131–185.
Klingele, M. H. & Brooker, S. (2003). Coord. Chem. Rev. 241, 119–132.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supplementary materials

Acta Cryst. (2009). E65, o1225 [doi:10.1107/S1600536809016432]

3-(2-Pyridyl)-5-(4-pyridyl)-4-(p-tolyl)-1H-1,2,4-triazole

L.-T. Yuan, H. Zhang, Z.-X. Wang and Z.-R. Qu

Comment

The main interest in triazoles lies in their pharmaceutical and agricultural applications (Grénman *et al.*, 2003). The utilization of 1,2,4-triazole derivatives as bridging ligands in transition-metal complexes is currently of considerable interest because of the fact that it represents a hybrid of pyrazole and imidazole with regard to the arrangement of its heteroatoms, thus promising a rich and versatile coordination chemistry (Haasnoot, 2000; Klingele & Brooker, 2003; Beckmann & Brooker, 2003). We report here the crystal structure of the title compound, which is a substituted 1,2,4-triazole synthesized by the reaction of 4,4'-dimethylphenylphosphazoanilide with N-(2-pyridyl)-N'-(4-pyridyl)hydrazine in *o*-dichlorobenzene (Erwin, 1958).

The structure of the title compound (Fig. 1) features a dihedral angle of 28.12 (10)° between the 2-pyridyl and triazole rings, a dihedral angle of 34.62 (10)° between the 4-pyridyl and triazole rings, and a dihedral angle of 71.43 (9) ° between the *p*-tolyl and the triazole rings. The crystal structure is stabilized by C—H··· π hydrogen interactions (Table 1) and π – π stacking interactions (Table 2).

Experimental

A mixture of 4,4'-dimethylphenylphosphazoanilide (3.60 g, 14.9 mmol) and N-(2-pyridyl)-N'-(4-pyridyl)hydrazine (3.00 g, 12.4 mmol) in *o*-dichlorobenzene (30 ml) was refluxed for 3 h, then conc. HCl (5 ml) and H₂O (5 ml) were added to the system after the removal of the solvent under reduced pressure. After refluxing for 1 h, the mixture was filtered and the fietrate was neutralized with K_2CO_3 to pH 8–9 to achieve a white solid. Colourless crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded with, C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and with $U_{iso}(H) = 1.2U_{eq}(C_{aromatic})$ or $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

3-(2-Pyridyl)-5-(4-pyridyl)-4-(p-tolyl)-1H-1,2,4-triazole

Crystal data

C ₁₉ H ₁₅ N ₅	$F_{000} = 656$
$M_r = 313.36$	$D_{\rm x} = 1.394 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1730 reflections
a = 5.6104 (11) Å	$\theta = 3.0-27.5^{\circ}$
b = 16.312 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 16.902 (4) Å	<i>T</i> = 293 K
$\beta = 105.07 \ (3)^{\circ}$	Prism, colourless
V = 1493.6 (6) Å ³	$0.20\times0.20\times0.20\ mm$
Z = 4	

Data collection

Rigaku SCXmini diffractometer	2918 independent reflections
Radiation source: fine-focus sealed tube	1734 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.105$
T = 293 K	$\theta_{\text{max}} = 26.0^{\circ}$
CCD_Profile_fitting scans	$\theta_{\min} = 3.5^{\circ}$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$h = -6 \rightarrow 6$
$T_{\min} = 0.982, \ T_{\max} = 0.983$	$k = -20 \rightarrow 20$
13896 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.071$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 0.6603P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$
2918 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$
217 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y C1 0.0362 (8) 1.0349 (6) 0.66367 (18) 0.84606 (18) C2 0.7141 (5) 0.73132 (19) 0.78095 (17) 0.0349(7) C3 0.79095 (19) 0.5160(6) 0.75540 (17) 0.0360 (8) C4 0.3738(7)0.9211 (2) 0.7518(2) 0.0508(9)H4B 0.9757 0.4004 0.7673 0.061* C5 0.1503 (6) 0.9004(2)0.7039(2)0.0480(9)H5B 0.0273 0.9396 0.6870 0.058* C6 0.1094 (6) 0.8215 (2) 0.0522 (10) 0.6810(2) H6A -0.04300.8056 0.6478 0.063* C7 0.2918 (6) 0.7655(2) 0.70656 (19) 0.0453 (8) 0.054* H7A 0.2658 0.7108 0.6914 C8 1.2577 (6) 0.63716 (17) 0.90639 (19) 0.0346(7) C9 1.4365 (6) 0.59609 (18) 0.8799 (2) 0.0418 (8) H9A 1.4153 0.5859 0.8243 0.050* C10 0.0471 (9) 1.6455 (6) 0.5704(2)0.9356(2) H10A 1.7648 0.5428 0.9167 0.056* C11 1.5079 (6) 0.6215 (2) 1.0397 (2) 0.0455 (9) H11A 1.5303 0.6301 1.0956 0.055* C12 1.2956 (6) 0.64888 (19) 0.98817 (19) 0.0406 (8) H12A 0.049* 1.1774 0.6754 1.0086 C13 0.9579 (5) 0.79279 (17) 0.91387 (17) 0.0310(7) C14 1.1613 (6) 0.84102 (19) 0.92208 (19) 0.0407 (8) H14A 1.2539 0.8385 0.8838 0.049* C15 0.0481 (9) 1.2267 (6) 0.8930(2) 0.9874(2)H15A 1.3659 0.9258 0.9935 0.058* C16 1.0920(6) 0.89820 (18) 1.04469 (19) 0.0421 (8) C17 0.8873 (6) 0.84945 (19) 1.03423 (19) 0.0429 (8) H17A 0.7930 0.052* 0.8520 1.0720 C18 0.8200 (5) 0.79711 (19) 0.96907 (17) 0.0362 (7) H18A 0.6802 0.7645 0.9625 0.043* C19 1.1735 (8) 0.9536(2) 1.1171 (2) 0.0689 (12) H19A 0.103* 1.3198 0.9824 1.1138 H19B 1.2082 0.9216 1.1665 0.103*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H19C	1.0450	0.9923	1.1176	0.103*
N1	0.9349 (5)	0.62309 (16)	0.77955 (16)	0.0446 (7)
N2	0.7292 (5)	0.66575 (17)	0.73835 (16)	0.0443 (7)
N3	0.9026 (4)	0.73278 (14)	0.84991 (14)	0.0324 (6)
N4	0.5604 (5)	0.86832 (16)	0.77874 (16)	0.0453 (7)
N5	1.6862 (5)	0.58304 (17)	1.01564 (19)	0.0508 (8)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.044 (2)	0.0345 (17)	0.0313 (17)	-0.0008 (15)	0.0120 (15)	-0.0043 (14)
C2	0.0358 (18)	0.0410 (18)	0.0263 (16)	-0.0069 (14)	0.0054 (14)	-0.0005 (15)
C3	0.0404 (18)	0.0421 (19)	0.0238 (15)	-0.0069 (15)	0.0054 (14)	-0.0014 (14)
C4	0.056 (2)	0.040 (2)	0.051 (2)	0.0005 (17)	0.0052 (19)	0.0049 (17)
C5	0.043 (2)	0.050 (2)	0.047 (2)	0.0048 (17)	0.0052 (17)	0.0093 (17)
C6	0.040 (2)	0.062 (3)	0.047 (2)	-0.0066 (18)	-0.0017 (17)	0.0049 (19)
C7	0.046 (2)	0.0430 (19)	0.0419 (19)	-0.0092 (16)	0.0016 (16)	-0.0041 (16)
C8	0.0388 (19)	0.0289 (16)	0.0374 (18)	-0.0048 (13)	0.0122 (15)	0.0015 (14)
C9	0.049 (2)	0.0355 (18)	0.0425 (19)	-0.0032 (16)	0.0153 (17)	-0.0008 (15)
C10	0.048 (2)	0.0399 (19)	0.059 (2)	-0.0016 (16)	0.0227 (19)	0.0037 (17)
C11	0.045 (2)	0.047 (2)	0.042 (2)	-0.0038 (17)	0.0087 (17)	-0.0008 (16)
C12	0.0382 (19)	0.047 (2)	0.0371 (18)	0.0025 (15)	0.0114 (15)	0.0003 (16)
C13	0.0326 (17)	0.0314 (16)	0.0264 (15)	-0.0044 (13)	0.0030 (13)	-0.0009 (13)
C14	0.0410 (19)	0.0423 (19)	0.0382 (18)	-0.0073 (15)	0.0094 (15)	-0.0019 (16)
C15	0.044 (2)	0.0390 (19)	0.055 (2)	-0.0101 (16)	0.0024 (18)	-0.0039 (17)
C16	0.055 (2)	0.0289 (17)	0.0324 (18)	0.0048 (16)	-0.0056 (17)	0.0024 (14)
C17	0.056 (2)	0.0401 (19)	0.0331 (18)	0.0051 (16)	0.0132 (16)	-0.0022 (15)
C18	0.0342 (17)	0.0413 (18)	0.0317 (17)	-0.0066 (14)	0.0060 (14)	-0.0033 (14)
C19	0.098 (3)	0.045 (2)	0.046 (2)	0.005 (2)	-0.013 (2)	-0.0117 (18)
N1	0.0515 (18)	0.0429 (16)	0.0381 (15)	-0.0024 (13)	0.0093 (14)	-0.0070 (13)
N2	0.0477 (17)	0.0464 (16)	0.0360 (15)	-0.0020 (14)	0.0057 (13)	-0.0070 (14)
N3	0.0372 (15)	0.0337 (14)	0.0257 (13)	-0.0043 (11)	0.0070 (11)	-0.0043 (11)
N4	0.0505 (18)	0.0413 (16)	0.0396 (16)	-0.0045 (14)	0.0036 (14)	-0.0006 (13)
N5	0.0429 (17)	0.0485 (18)	0.060 (2)	-0.0045 (14)	0.0115 (15)	0.0045 (15)

Geometric parameters (Å, °)

C1—N1	1.300 (4)	C10—H10A	0.9300
C1—N3	1.361 (4)	C11—N5	1.331 (4)
C1—C8	1.458 (4)	C11—C12	1.356 (4)
C2—N2	1.304 (4)	C11—H11A	0.9300
C2—N3	1.355 (3)	C12—H12A	0.9300
C2—C3	1.456 (4)	C13—C18	1.360 (4)
C3—N4	1.326 (4)	C13—C14	1.363 (4)
C3—C7	1.377 (4)	C13—N3	1.431 (3)
C4—N4	1.340 (4)	C14—C15	1.365 (4)
C4—C5	1.347 (4)	C14—H14A	0.9300
C4—H4B	0.9300	C15—C16	1.376 (5)
C5—C6	1.345 (5)	C15—H15A	0.9300

C5—H5B	0 9300	C16—C17	1 370 (5)
C6—C7	1.356 (5)	C16—C19	1.494 (4)
С6—Н6А	0.9300	C17—C18	1.367 (4)
C7—H7A	0.9300	С17—Н17А	0.9300
C8—C12	1.356 (4)	C18—H18A	0.9300
C8—C9	1 375 (4)	С19—Н19А	0 9600
C9—C10	1.365 (4)	С19—Н19В	0.9600
С9—Н9А	0.9300	C19—H19C	0 9600
C10—N5	1.328 (4)	N1—N2	1.372 (4)
N1—C1—N3	110.2 (3)	C11—C12—H12A	120.4
N1—C1—C8	123.6 (3)	C8—C12—H12A	120.4
N3—C1—C8	126.3 (3)	C18—C13—C14	120.7 (3)
N2—C2—N3	109.9 (3)	C18—C13—N3	120.2 (3)
N2—C2—C3	122.6 (3)	C14—C13—N3	118.9 (3)
N3—C2—C3	127.5 (3)	C13—C14—C15	118.9 (3)
N4—C3—C7	122.5 (3)	C13—C14—H14A	120.6
N4—C3—C2	118.5 (3)	C15—C14—H14A	120.6
C7—C3—C2	119.0 (3)	C14—C15—C16	121.7 (3)
N4—C4—C5	124.5 (3)	C14—C15—H15A	119.1
N4—C4—H4B	117.8	С16—С15—Н15А	119.1
C5—C4—H4B	117.8	C17—C16—C15	117.9 (3)
C6—C5—C4	118.4 (3)	C17—C16—C19	121.6 (3)
C6—C5—H5B	120.8	C15—C16—C19	120.4 (3)
C4—C5—H5B	120.8	C18—C17—C16	120.9 (3)
C5—C6—C7	119.6 (3)	С18—С17—Н17А	119.6
С5—С6—Н6А	120.2	С16—С17—Н17А	119.6
С7—С6—Н6А	120.2	C13—C18—C17	119.9 (3)
C6—C7—C3	118.9 (3)	C13—C18—H18A	120.1
С6—С7—Н7А	120.5	C17—C18—H18A	120.1
С3—С7—Н7А	120.5	С16—С19—Н19А	109.5
C12—C8—C9	117.8 (3)	С16—С19—Н19В	109.5
C12—C8—C1	123.3 (3)	H19A—C19—H19B	109.5
C9—C8—C1	118.8 (3)	С16—С19—Н19С	109.5
С10—С9—С8	119.5 (3)	H19A—C19—H19C	109.5
С10—С9—Н9А	120.2	H19B—C19—H19C	109.5
С8—С9—Н9А	120.2	C1—N1—N2	107.3 (3)
N5-C10-C9	123.0 (3)	C2—N2—N1	107.6 (2)
N5-C10-H10A	118.5	C2—N3—C1	104.9 (2)
C9—C10—H10A	118.5	C2—N3—C13	129.0 (2)
N5-C11-C12	124.3 (3)	C1—N3—C13	126.1 (2)
N5—C11—H11A	117.9	C3—N4—C4	116.1 (3)
C12—C11—H11A	117.9	C10—N5—C11	116.2 (3)
C11—C12—C8	119.2 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
C11—H11A····Cg1 ⁱ	0.93	2.79	3.630 (4)	150
C12—H12A…Cg3	0.93	2.90	3.532 (4)	126

supplementary materials

C14—H14A…Cg1 ⁱⁱ	0.93	2.76	3.628 (4)	156
C18—H18A····Cg2 ⁱⁱⁱ	0.93	2.78	3.615 (4)	149
C19—H19C···Cg3 ^{iv}	0.96	3.08	3.698 (4)	124
	1 (11)			

Symmetry codes: (i) x+1, -y-3/2, z-1/2; (ii) x+1, y, z; (iii) x-1, y, z; (iv) -x, -y, -z.

Table 2

 π - π Stacking interaction geometry (α is the dihedral angle between the planes, DCC is the length of the centroid–centroid vector, τ is the angle subtended by the plane normal to CC. Cg2 is the centroid of ring N5/C8–C12)

Group 1	Group 2	α (°)	DCC (Å)	τ (°)
Cg2	Cg2 ⁱ	0.0	3.794 (3)	31.30

Symmetry code: (i) 3-x, 1-y, 2-z.

